RUHR-UNIVERSITÄT BOCHUM

Technical description (High Power Charging Station)

Input voltage supply	3-phase, 400V AC (±15 %), 50/60 Hz (±5 %), cos ϕ = 0.95 or more
DC output range	DC 50 – 500 V, DC 0 – 125 A, maximum power 50 kW
	Ripple content: 5 % or below
AC output range	1-3 phase 230/400 V, up to 80 A, others possible
Possible connectors	According to IEC 62196
Communication	According to IEC 61851 (CAN2.0B, ISO11898, etc.)

Electrical design of DC part according to CHAdeMO-Standard

Vehicle to Grid

Maximum Power	Depends on battery voltage, up to 50 kW
---------------	---

General Information

Protection system	Power supply released on occurrence of ground faults and short
	circuits. In accordance to existing standards (DIN VDE 0100)
Conversion efficiency	>90% (including auxiliary loss)
Noise	64dB (1m around; 1m height)
Grid connection	According to IEC 61000, EN 50160,

Contact and further information:

Prof. Dr.-Ing. C. Sourkounis Ruhr-University of Bochum, Power Systems Technology and Power Mechatronics Universitaetsstrasse 150 – 44780 Bochum – Germany mail: office@enesys.rub.de, web: http://www.enesys.rub.de