STORY

Research overview on thermal energy storage in FP-project Merits and H2020-project Story

Workshop: Thermal Energy Storage Systems for Enery Efficient Buildings 22nd June 2017, Ruhr-Universität Bochum, Germany

30.06.2017

Merits & Story

Table of contents

FP7 project Merits

- General overview
- Partners
- Thermal energy storage research

H2020 project Story

- General Overview
- Partners
- Thermal energy storage research

30.06.2017

FP7 – project MERITS

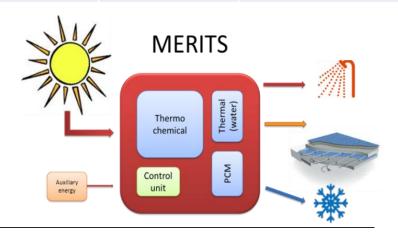
Project STORY - H2020-LCE-2014-3

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646426

Merits

General Overview

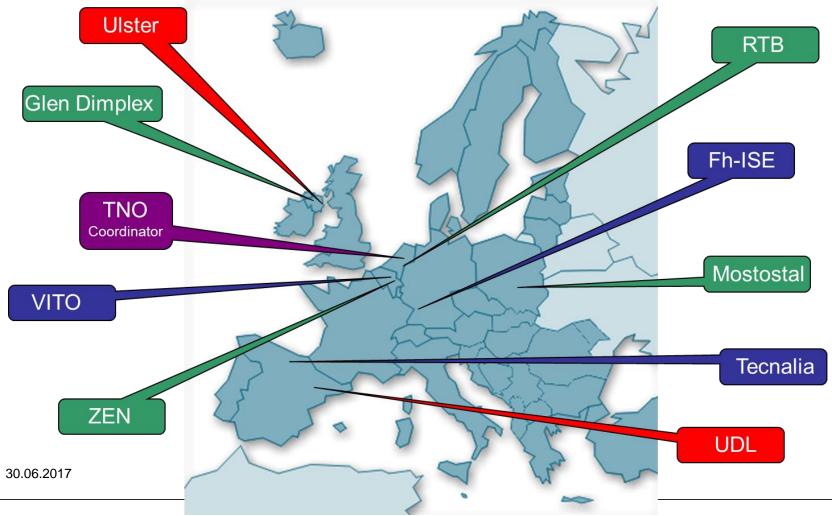
Problem statement


- Solar energy suffices & highest potential for sustainable future, but there is an inbalance in supply and demand of heat
- Thermal energy storage is the solution for a key bottleneck against the widespread and integrated use of Renewable Energy Systems

Goal

30.06.2017

- the Merits consortium worked on a new solutions for
 - Improved use of renewable sources
 - For heating and cooling and hot water applications
 - In individual dwellings (new and existing)
 - For all the three European climate zones
 - To build a prototype of a fully functioning compact rechargeable thermal battery


	Utilization 2005 [EJ]	Technical potential [EJ/yr]	
Biomass	46.3	160 - 270	
Geothermal	2.3	810 - 1545	
Hydro	11.7	50 - 60	
Solar	0.5	62,000 - 280,000	
Wind	1.3	1250 - 2250	
Ocean	-	3240 - 10,500	

General Overview

Project STORY - H2020-LCE-2014-3

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646426

30.06.2017

following reversible reaction:

- Material Storage Density \rightarrow 2.9 GJ/m3

Storage is in principle loss free!

 For Merits, Na₂S has been selected as thermochemical storage material (TCM). Na₂S is an hygroscopic salt and we use the

 $Na_2S \cdot 5H_2O + heat \leftrightarrow Na_2S \cdot \frac{1}{2}H_2O + \frac{4}{2}H_2O$

Storage principle : short and long term storage

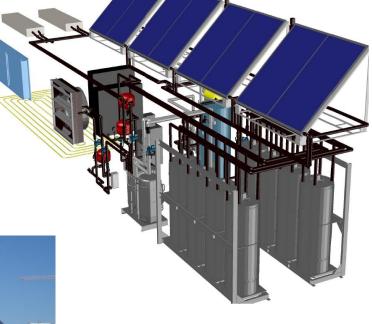
Merits

General Overview

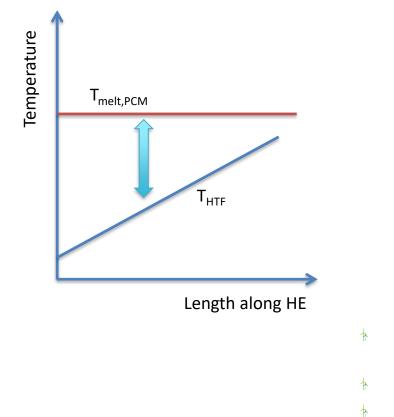
General Overview

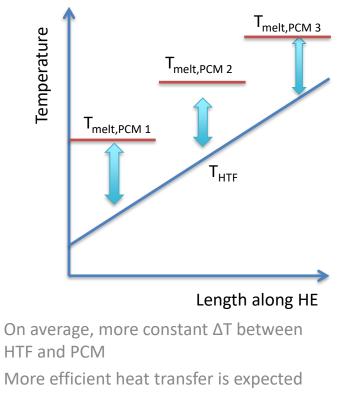
• Merits field test demonstrator

- Complete storage system and building simulation compartment 45ft container
- System demonstration in Lleida (without TCS)
- System demonstration in Warsaw (with TCS)



30.06.2017


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646426

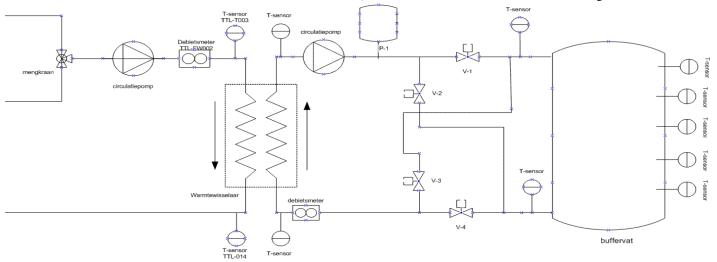


PCM research

Single stage

Multiple stages

Water can be delivered at temperatures suitable for DHW use for a longer period of time


30.06.2017

STORY

PCM research

• Thermo-technical laboratory

Construction of three different test sequences to assess performance:

- **1.** Constant Temperature Test
- 2. Constant Power Test
- 3. Realistic supply and demand profiles

30.06.2017

How long and at which quality/temperature

can DHW be delivered?

PCM research - Results

Q _{HTF} [Wh] 114 149 +31% Time [sec] 42 54 +29% Flow rate [L/min] 5 5		Reference: identical PCM	System 2: multiple PCM	Difference
Flow rate [L/min] 5 5 Total volume [L] 3.5 4.5 +29% Average P [W] 9 990 10 090 +1% Q top vessel [Wh] 29 35 +21% Q middle vessel [Wh] 36 48 +33% Q bottom vessel [Wh] 37 53 +43%	Q _{HTF} [Wh]	114	149	+31%
Total volume [L] 3.5 4.5 +29% Average P [W] 9 990 10 090 +1% Q top vessel [Wh] 29 35 +21% Q middle vessel [Wh] 36 48 +33% Q bottom vessel [Wh] 37 53 +43%	Time [sec]	42	54	+29%
Average P [W] 9 990 10 090 +1% Q top vessel [Wh] 29 35 +21% Q middle vessel [Wh] 36 48 +33% Q bottom vessel [Wh] 37 53 +43%	Flow rate [L/min]	5	5	
Q top vessel [Wh] 29 35 +21% Q middle vessel [Wh] 36 48 +33% Q bottom vessel [Wh] 37 53 +43%	Total volume [L]	3.5	4.5	+29%
Q middle vessel [Wh] 36 48 +33% Q bottom vessel [Wh] 37 53 +43%	Average P [W]	9 990	10 090	+1%
Q bottom vessel [Wh] 37 53 +43%	Q _{top vessel} [Wh]	29	35	+21%
	Q _{middle vessel} [Wh]	36	48	+33%
Losses [W/K 3,628 W/K	Q _{bottom vessel} [Wh]	37	53	+43%
	Losses [W/K	3,628		

30.06.2017

10

H2020-project STORY

Show the added value of storage in the distribution grid

- To demonstrate and evaluate innovative approaches for energy storage systems
- To find solutions, which are affordable, secure and ensure an increased percentage of self-supply of electricity
- To accelerate innovation and business models for deployment of storage at local level.

30.06.2017

Project partners

30.06.2017

13

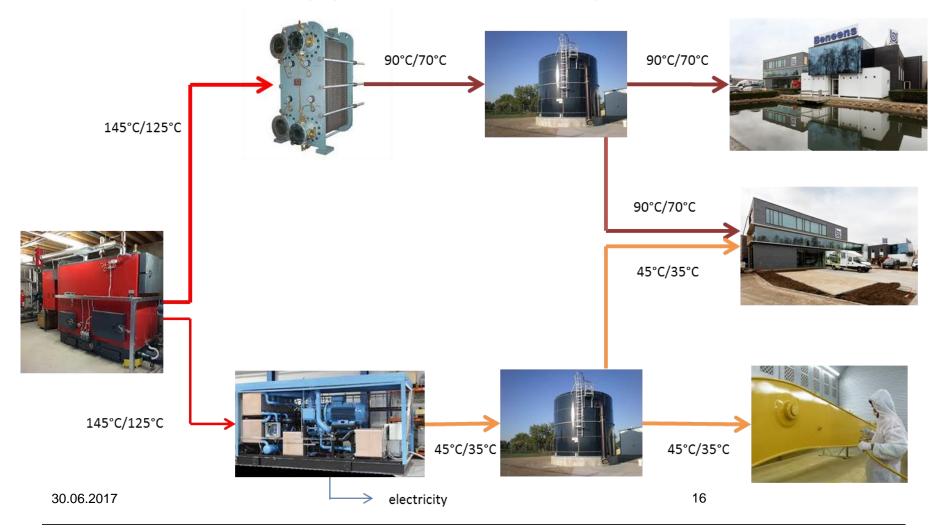
Overview

- 1. Residential building (Oud-Heverlee, Belgium)
- 2. Roll out of a neighbourhood (Oud-Heverlee, Belgium)
- 3. Storage in factory (Navarra, Spain)
- 4. Storage in residential district (Lecale, Northern Ireland)
- 5. Flexibility and robustness of large scale storage unit in:
 - 1. Industrial area (Hagen, Germany and Kranj, Slovenia)
 - 2. Residential area (Suha, Slovenia)
- Roll out of private multi-energy grid in industrial area (Olen, Belgium)

30.06.2017

Overview

1. Residential building (Oud-Heverlee, Belgium)


- 2. Roll out of a neighbourhood (Oud-Heverlee, Belgium)
- 3. Storage in factory (Navarra, Spain)
- 4. Storage in residential district (Lecale, Northern Ireland)
- 5. Flexibility and robustness of large scale storage unit in:
 - 1. Industrial area (Hagen, Germany and Kranj, Slovenia)
 - 2. Residential area (Suha, Slovenia)
- 6. Roll out of private multi-energy grid in industrial area (Olen, Belgium)

30.06.2017

6. Roll out of private multi-energy grid in industrial area (Olen, Belgium)

6. Roll out of private multi-energy grid in industrial area (Olen, Belgium)

- Efficiency enhancement and active control of ORC through the use of thermal storage
- Quality of estimating state of charge of thermal energy storage
- Peak power thermal demand management by prioritizing in use of heat and operational management of thermal energy storage
- District heating network working at 2 different supply temperatures and local storage to reduce the losses
- Adaptation of components in industrial processes to increase use of waste heat of ORC

Project STORY - H2020-LCE-2014-3

Impact creation

Watch our movie: What STORY is about

30.06.2017

18

THANK YOU!

Contact

Johan Van Bael VITO Belgium Johan.vanbael@vito.be Phone: +32 14 335826

30.06.2017

