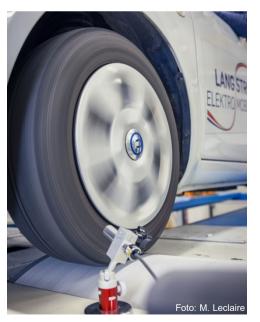


Einführung in wissenschaftliches Arbeiten

Themenvorstellung EneSys

10.04.2025

Präsentation jederzeit abrufbar: www.enesys.rub.de


Prof. Dr.-Ing. Constantinos Sourkounis
Institut für Energiesystemtechnik und Leistungsmechatronik
Fakultät für Elektrotechnik und Informationstechnik
Ruhr-Universität Bochum

Enesys

- Veranstaltungen im Bachelor
 - Elektrotechnik 3 Energietechnik
 - Leistungselektronik
 - Bachelor-Praktikum Energietechnik
 - Bachelor-Vertiefungspraktikum Elektronik (2 Versuche)
 - Beteiligung an: Einführung in wissenschaftliches Arbeiten
 - Praxisprojekte und Bachelorarbeiten
- Koordination von zwei Masterstudienschwerpunkten

Energiesystemtechnik

Elektromobilitätssysteme

Dezentrale Energiesysteme

Energiefluss-, Last- und Batteriemanagement, Sensorik

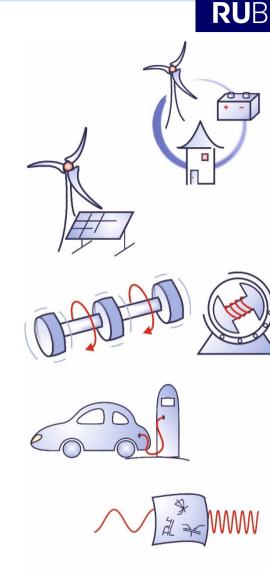
Regenerative Energiequellen

Windenergie, Photovoltaik, Geothermie

Mechatronische Antriebssysteme

Lastkollektivminimierung, Schwingungsdämpfung

Elektromobilität

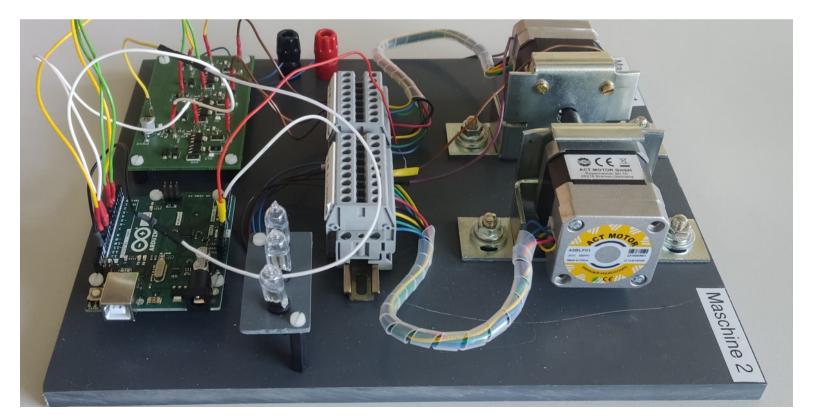

Antriebssystem, Ladeinfrastruktur, Alltagstauglichkeit

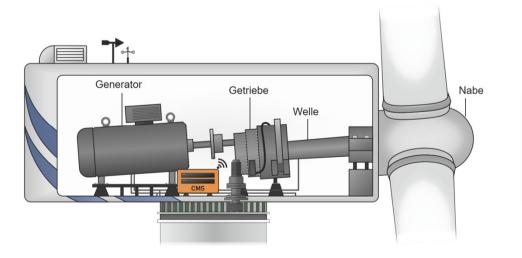
Leistungselektronik

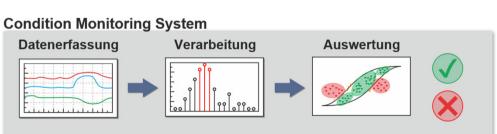
Konzepte, Schaltungstopologien, Regelung

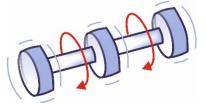
Netzqualität und Energiekonditionierung

Aktive Filter- und Kompensationsanlagen, Steller

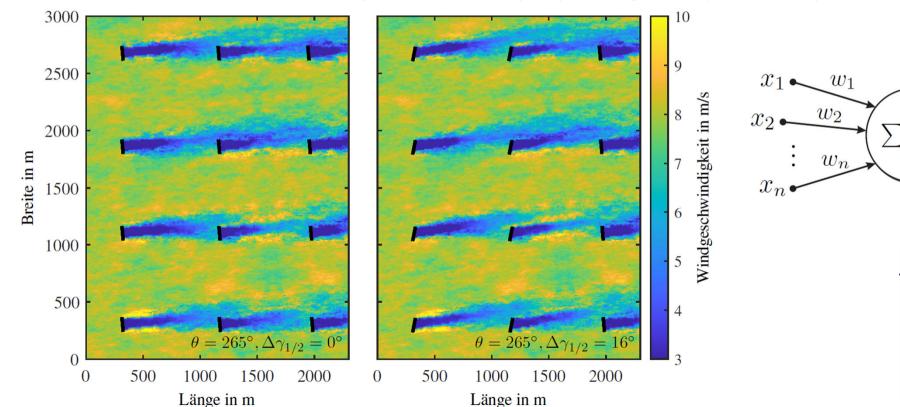



- Ziel: Untersuchung verschiedener Lastfälle an einem Maschinensatz
- Aufgabe:
 - Erweiterung des Prüfstandes um Ein-/Ausgabemöglichkeiten (Display, Drucktaster)
 - Optimierung des C-Codes zur Ansteuerung des Stromrichters
 - Durchführung von Strom- und Spannungsmessungen mit Hilfe eines Oszilloskops
- Ansprechpartner: Simon Johannliemke-Appelbaum, M.Sc. (Johannliemke@enesys.rub.de)

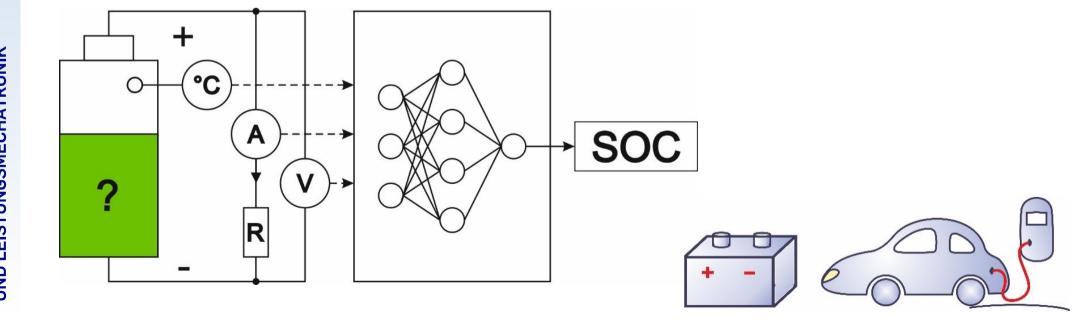




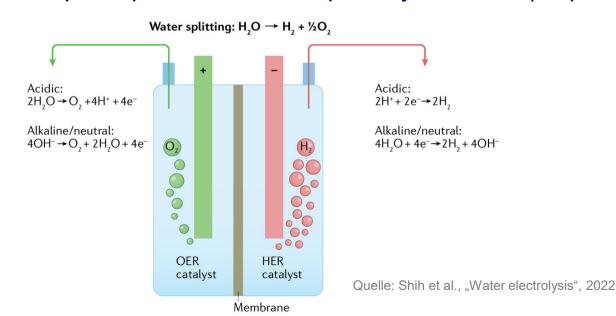
- RUB
- Ziel: Schätzung des "Gesundheitszustandes" und der Restlebensdauer von Windenergiekonverter-Komponenten
- Aufgabe:
 - Darstellung der Relevanz von Condition Monitoring Systemen (CMS) für Windenergiekonverter (WEK)
 - Literaturbasierte Erarbeitung von aktuell verfügbaren CMS in WEK
 - Darstellung des möglichen Verbesserungspotentials von aktuell verfügbaren CMS
- Ansprechpartner: Tim Tölle, M.Sc. (toelle@enesys.rub.de)

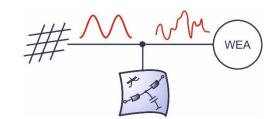


RUB

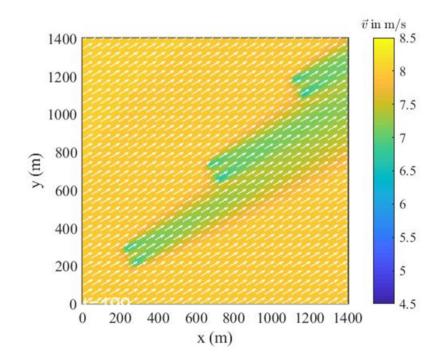

 $\phi(\cdot)$

- Ziel: Optimierung eines KI-Trainingsprozesses zur Prädiktion von Nachlaufströmungen in Windparks
- Aufgabe:
 - Einarbeitung in Künstliche Neuronale Netze (KNN)
 - Anlernen von KNN mit verschiedenen Topologien
 - Bewertung und Optimierung des Trainingsvorgangs
- Ansprechpartner: Philip Krajinski, M.Sc. (krajinski@enesys.rub.de)

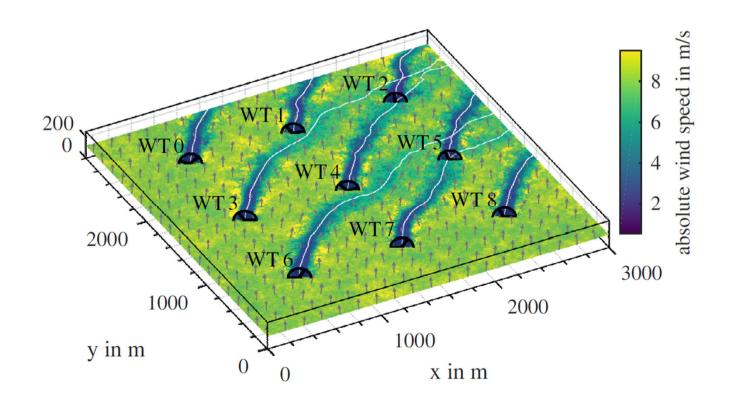



- Ziel: Bestimmung des Ladezustands von LiFePO4-Batteriezellen mittels Verfahren des maschinellen Lernens
- Aufgabe:
 - Literaturrecherche zu Herausforderungen bei der Ladezustandsbestimmung von LFP-Batterien sowie geeigneten ML-Verfahren für den Einsatz in Batteriesystemen
 - Auswahl und Darstellung eines geeigneten ML-Verfahrens
 - Beschreibung des Trainingsprozesses inkl. der erforderlichen Daten
 - Bewertung der zu erwartenden Qualität der Ergebnisse
- Ansprechpartner: Daniel Breuer, M.Sc. (breuer@enesys.rub.de)

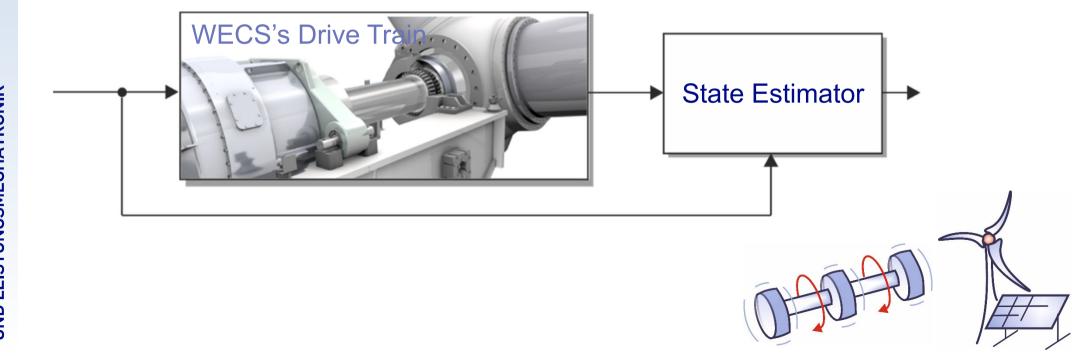
- Ziel: Recherche-basierte Analyse des Degradationsverhaltens von Elektroden bei PEM-Elektrolyseuren
- Aufgabe:
 - Darstellung des PEM-Elektrolyseverfahrens:
 - Wie verläuft der Prozess im Detail ab?
 - Welche Elektroden werden typischerweise verwendet?
 - Degradation:
 - Wovon hängt diese ab?
 - Wird die Dynamik des Prozesses durch Degradationseffekte eingeschränkt?
- Ansprechpartner: Lars Siepelmeyer, M.Sc. (siepelmeyer@enesys.rub.de)

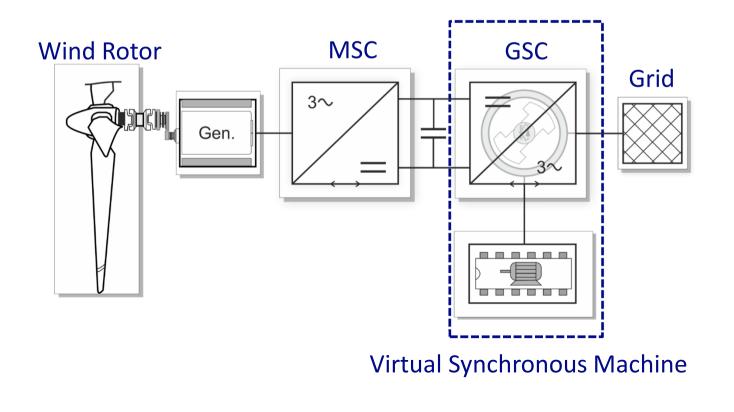

- RUB
- Ziel: Abschätzung des technischen und wirtschaftlichen Potenzials von bidirektionalem Laden (Vehicle-to-Home (V2H), Vehicle-to-Grid (V2G)) für Privathaushalte
- Aufgabe:
 - Recherche zu rechtlichen Rahmenbedingungen von V2H und V2G
 - Recherche zum Einfluss von bidirektionalem Laden auf die physikalischen und chemischen Alterungsmechanismen der Lithium-Ionen-Batterien unter Beachtung externer Faktoren wie Temperatur, Ladeleistung und Nutzungsprofile
 - Wirtschaftlichkeitsanalyse für Privathaushalte
- Ansprechpartner: Pascal Fabritz, M.Sc. (fabritz@enesys.rub.de)

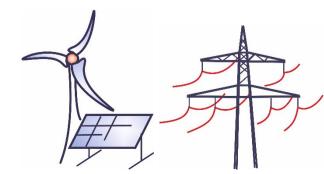
- RUB
- Ziel: Realitätsnahe Modellierung und Visualisierung von Luftströmungen in einem Windpark
- Aufgabe:
 - Recherche von Modellansätzen zur Nachbildung von Windnachläufen
 - Recherche von Verfahren zur Berechnung der Überlagerung der Nachläufe von mehreren Windenergieanlagen
 - Umsetzung eines Berechnungsverfahrens zur Überlagerung der Windnachläufe als Erweiterung eines bestehenden Modells in Matlab/Simulink
- Ansprechpartner: Benedikt Spichartz, M.Sc. (b.spichartz@enesys.rub.de)



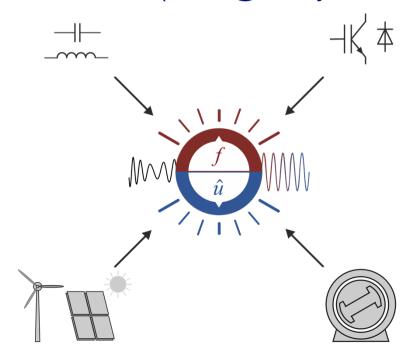
RUB

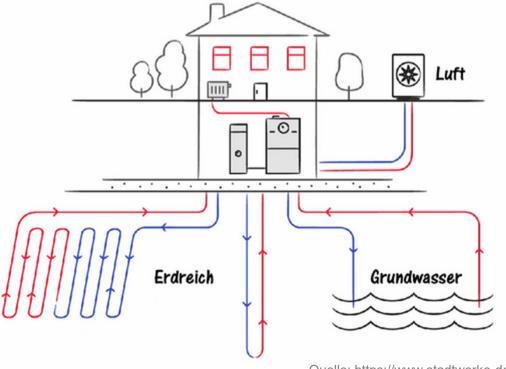

- Ziel: Beurteilung der Eignung verschiedener Programme und Tools
- Aufgabe:
 - Erstellung von 2D- und 3D-Grafiken zur Visualisierung von Beispieldaten (z. B. mit den Programmen Mayavi, matplotlib, paraview, Matlab oder plotly)
 - Herausarbeitung von Vor- und Nachteilen
- Ansprechpartner: Vile Kipke, M.Sc. (kipke@enesys.rub.de)

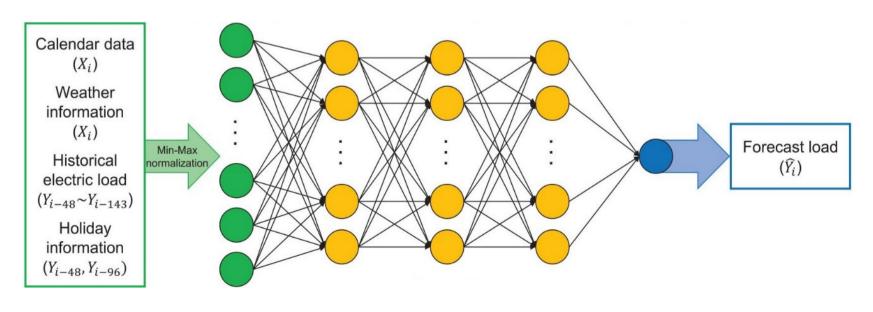




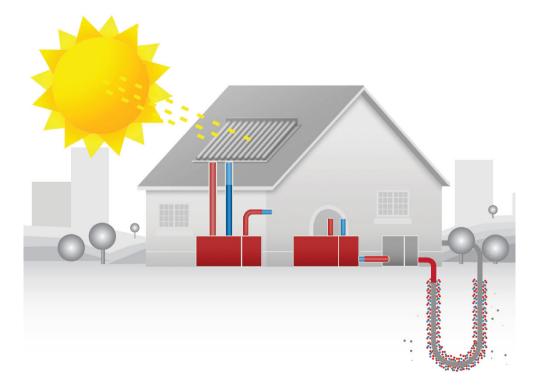
- Objective: To design a state observer for shaft torque estimation of wind energy conversion systems (WECS)
- Tasks:
 - Explain the function of Luenberger observer
 - Use the Luenberger observer approach to design a state observer for torque estimation of WECS in MATLAB/Simulink
 - Simulate and prove the functionality of the model
- Contact: Abubakar Isa, M.Tech. (isa@enesys.rub.de)


- RUB
- Objective: A Literature review on Virtual Synchronous Machine (VSM)
- Tasks:
 - Identifying the state of the art
 - Comparison of VSM implementation approaches
 - Presentation of applications of VSM to grid frequency support
- Contact: Abubakar Isa, M.Tech. (isa@enesys.rub.de)

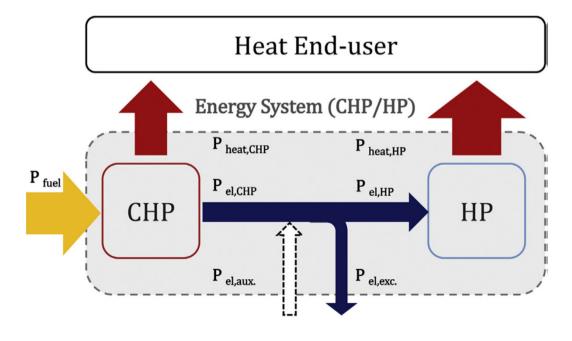

- Ziel: Sicherstellung einer stabilen und effizienten elektrischen Energieversorgung
- Aufgabe:
 - ► Literaturbasierte Erarbeitung von Systemdienstleistungen zur Frequenz- und Spannungshaltung und der aktuellen technischen Realisierung
 - Darstellung der Herausforderungen bei voranschreitender Dezentralisierung der Stromerzeugung
 - Darstellung von Lösungsansätzen zur Realisierung von Systemdienstleistungen im Netz der Zukunft
- Ansprechpartner: Tim Tölle, M.Sc. (toelle@enesys.rub.de)


- Ziel: Ermittlung von Potenzialen zur Steigerung des Eigenverbrauchs in Wohnquartieren mit PV-Anlage und Wärmepumpe durch thermische Speicher
- Aufgabe:
 - Recherche zu thermischen Speichertechnologien, die in Wohnquartieren Anwendung finden können
 - Berechnung einer möglichen Erhöhung des Autarkiegrades durch Einbinden eines thermischen Speichers in einem definierten Szenario
- Ansprechpartner: Pascal Fabritz, M.Sc. (fabritz@enesys.rub.de)

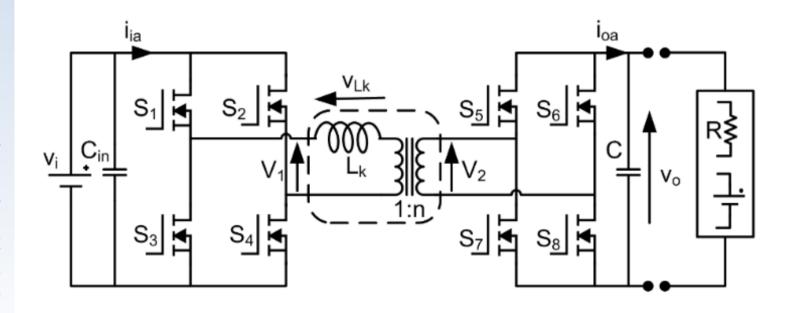
- Ziel: Anwendung von KI und datengesteuerten Verfahren zur Vorhersage des Energieverbrauchs in Wohngebäuden
- Aufgabe:
 - Recherche zur Energieverbrauchsprognose (Strom und Wärme)
 - Beschreibung des gesamten Workflow-Prozesses: von Daten bis zum Vorhersagemodell
 - Anwendung von Prognosemethoden auf Messdaten mit Hilfe von Python Libraries
- Ansprechpartner: Pavlos Tourou, M.Eng. (tourou@enesys.rub.de)



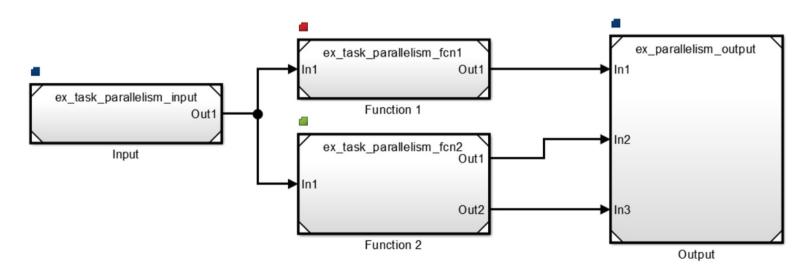
Quelle: Moon et. al A comparative analysis of artificial neural network architectures for building energy consumption forecasting.

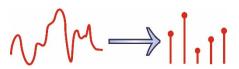

- Ziel: Identifizierung von Methoden zur Abschätzung des Ladezustands (State of Charge) von Wärmespeichern mit Phasenwechselmaterialien (PCM)
- Aufgabe:
 - Literaturrecherche und Identifizierung von Methoden
 - Vergleich der ermittelten Methoden in Bezug auf Genauigkeit und Implementierungsaufwand
 - Umsetzung in Matlab/Simulink mit bereitgestellten Modellen
- Ansprechpartner: Pavlos Tourou, M.Eng. (tourou@enesys.rub.de)

- Ziel: Darstellung von Hybridsystemen mit Mikro-Kraft-Wärme-Kopplungsanlagen (µKWK) und Wärmepumpen für Wohnquartiere
- Aufgabe:
 - Literaturbasierte Erarbeitung typischer Systemkonfigurationen, einschließlich Systemen mit PV und Energiespeichern
 - Darstellung von Steuerungsverfahren und Energiemanagementstrategien für den optimalen Betrieb im Hinblick auf Betriebskosten und Benutzerkomfort
- Ansprechpartner: Pavlos Tourou, M.Eng. (tourou@enesys.rub.de)



- Stabilisierung des Stromnetzes und Bereitstellung von Regelleistung mittels Solaranlagen
 - ▶ Ziel: Bewältigung der Stabilitätsherausforderungen für das Stromnetz bei zunehmender dezentraler Energieerzeugung
 - Aufgabe: Erstellung einer Übersicht über Regelungsmöglichkeiten von Photovoltaikanlagen und Ableitung der damit verbundenen Möglichkeiten, das Stromnetz zu stabilisieren und Regelleistung bereitzustellen
 - Ansprechpartner: Tim Vößing, M.Sc. (voessing@enesys.rub.de)
- Energiemanagementsysteme für Wohnhäuser mit dezentraler Energieversorgung
 - ➤ Ziel: Intelligentes Energiemanagement von Wohnhäusern mit dezentraler Energieversorgung und Elektromobilität zur Maximierung des Eigenverbrauchs sowie Minimierung von Lastspitzen
 - Aufgabe: Erstellung einer Übersicht über relevante Regelungsverfahren sowie über deren Vorteile und Nachteile
 - ► Ansprechpartner: Tim Vößing, M.Sc.




- **RU**B
- Ziel: Darstellung, Funktionsweise und Übersicht über verschiedene Konzepte
- Aufgabe:
 - ► Recherche: Welche Arten von DC-DC-Wandlern gibt es? Warum ist ein Transformator sinnvoll? Welche Nachteile hat dieser? Welche Verlustarten treten auf?
 - Wie sieht eine typische Schaltabfolge für verschiedene Betriebsarten aus?
 - Für welche Anwendungsgebiete könnte dieser Aufbau sinnvoll sein?
- Ansprechpartner: Lars Siepelmeyer, M.Sc. (siepelmeyer@enesys.rub.de)

- RUB
- Ziel: Untersuchung der Möglichkeiten, Simulationsmodelle mit Matlab/Simulink auf einem PC mit Multicore-Architektur nebenläufig auszuführen
- Aufgabe:
 - Anhand von einem oder mehreren einfachen Beispielen, welche teilweise von MathWorks bereitgestellt werden, soll erarbeitet werden, welche Schritte notwendig sind, um ein Simulink-Modell auf mehrere CPU-Kerne zu verteilen und die Modellteile parallel zu berechnen
- Ansprechpartner: Vile Kipke, M.Sc. (kipke@enesys.rub.de)

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt: Dr.-Ing. Philipp Spichartz p.spichartz@enesys.rub.de